--- title: "Examples of Longitudinal Models with Time-varying Covariates" output: rmarkdown::html_vignette description: > This vignette provides a comprehensive exploration and practical examples of the `getTVC()` function. This function is designed to construct Latent Growth Curve Models (LGCMs) or Latent Change Score Models (LCSMs) with a (decomposed) time-varying covariate. The supported functional forms of LGCMs include linear, quadratic, negative exponential, Jenss-Bayley, and bilinear spline. LCSMs support quadratic, negative exponential, Jenss-Bayley, and nonparametric functions. Notably, the negative exponential and Jenss-Bayley LGCMs/LCSMs, as well as bilinear spline LGCMs, can be fitted as intrinsically nonlinear models. Furthermore, this function offers flexibility in allowing the incorporation of time-invariant covariates (TICs) as needed. vignette: > %\VignetteIndexEntry{getTVC_examples} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ## Load nlpsem package, dependent packages and set CSOLNP as the optimizer ```{r, message = FALSE} library(nlpsem) mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE) ``` ## Load pre-computed models ```{r, message = FALSE} load(system.file("extdata", "getTVCmodel_examples.RData", package = "nlpsem")) ``` ## Load example data and preprocess data ```{r, message = FALSE, eval = FALSE} # Load ECLS-K (2011) data data("RMS_dat") RMS_dat0 <- RMS_dat # Re-baseline the data so that the estimated initial status is for the # starting point of the study baseT <- RMS_dat0$T1 RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12 RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12 RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12 RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12 RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12 RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12 RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12 RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12 RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12 # Standardize time-invariant covariates (TICs) ## ex1 is standardized growth TIC in models RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning) # Standardize time-varying covariate (TVC) BL_mean <- mean(RMS_dat0[, "R1"]) BL_var <- var(RMS_dat0[, "R1"]) RMS_dat0$Rs1 <- (RMS_dat0$R1 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs2 <- (RMS_dat0$R2 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs3 <- (RMS_dat0$R3 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs4 <- (RMS_dat0$R4 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs5 <- (RMS_dat0$R5 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs6 <- (RMS_dat0$R6 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs7 <- (RMS_dat0$R7 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs8 <- (RMS_dat0$R8 - BL_mean)/sqrt(BL_var) RMS_dat0$Rs9 <- (RMS_dat0$R9 - BL_mean)/sqrt(BL_var) xstarts <- mean(baseT) ``` ## Example 1: This example includes two models. Model 1 is a full bilinear spline LGCM with a TVC to examine the influence of baseline teacher-reported approach to learning and the development in reading ability on the development of mathematics ability. It also includes a visualization showcasing the growth status of mathematics ability. Model 2 is a full bilinear spline LGCM with a decomposed TVC (interval-specific slopes) to examine the influence of baseline teacher-reported approach to learning and the development in reading ability on the development of mathematics ability. P values and Wald confidence intervals of all parameters are provided. It also includes a visualization showcasing the growth status of mathematics ability. ```{r, message = FALSE, eval = FALSE} set.seed(20191029) Math_TVC_BLS_f <- getTVCmodel( dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE, records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 0, growth_TIC = "ex1", res_scale = 0.1, tries = 10 ) paraBLS_TVC.f <- c( "Y_alpha0", "Y_alpha1", "Y_alpha2", "Y_alphag", paste0("Y_psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "Y_residuals", "X_mueta0", "X_mueta1", paste0("X_psi", c("00", "01", "11")), paste0("X_rel_rate", 2:8), paste0("X_abs_rate", 1:8), "X_residuals", paste0("betaTIC", c(0:2, "g")), paste0("betaTVC", c(0:2, "g")), "muTIC", "phiTIC", "Y_mueta0", "Y_mueta1", "Y_mueta2", "Y_mu_knot", "covBL", "kappa", "Cov_XYres" ) set.seed(20191029) Math_TVCslp_BLS_f <- getTVCmodel( dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = TRUE, records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 1, growth_TIC = "ex1", res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE, names = paraBLS_TVC.f ) ``` ```{r} getEstimateStats(est_in = Math_TVCslp_BLS_f@Estimates, CI_type = "Wald") Figure1 <- getFigure( model = Math_TVC_BLS_f@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Mathematics" ) show(Figure1) Figure2 <- getFigure( model = Math_TVCslp_BLS_f@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Mathematics" ) show(Figure2) ``` A comparison between Figure 1 and Figure 2 demonstrates that incorporating a TVC directly results in underestimation of the growth factor means. ## Example 2: Fit reduced bilinear spline LGCMs with a decomposed TVC (interval-specific slopes, interval-specific changes, and change from baseline) to examine the influence of baseline teacher-reported approach to learning and the development in reading ability on the development of mathematics ability. It also includes a visualization showcasing the growth status of mathematics ability. ```{r, message = FALSE, eval = FALSE} paraBLS_TVC.r <- c( "Y_alpha0", "Y_alpha1", "Y_alpha2", "Y_knot", paste0("Y_psi", c("00", "01", "02", "11", "12", "22")), "Y_residuals", "X_mueta0", "X_mueta1", paste0("X_psi", c("00", "01", "11")), paste0("X_rel_rate", 2:8), paste0("X_abs_rate", 1:8), "X_residuals", paste0("betaTIC", 0:2), paste0("betaTVC", 0:2), "muTIC", "phiTIC", "Y_mueta0", "Y_mueta1", "Y_mueta2", "covBL", "kappa", "Cov_XYres" ) set.seed(20191029) Math_TVCslp_BLS_r <- getTVCmodel( dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE, records = 1:9, y_model = "LGCM", TVC = "R", decompose = 1, growth_TIC = "ex1", res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE, names = paraBLS_TVC.r) set.seed(20191029) Math_TVCchg_BLS_r <- getTVCmodel( dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE, records = 1:9, y_model = "LGCM", TVC = "R", decompose = 2, growth_TIC = "ex1", res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE, names = paraBLS_TVC.r) set.seed(20191029) Math_TVCchgBL_BLS_r <- getTVCmodel( dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE, records = 1:9, y_model = "LGCM", TVC = "R", decompose = 3, growth_TIC = "ex1", res_scale = c(0.1, 0.1), res_cor = 0.3, tries = 10, paramOut = TRUE, names = paraBLS_TVC.r) ``` ```{r} Figure3 <- getFigure( model = Math_TVCslp_BLS_r@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Mathematics" ) show(Figure3) Figure4 <- getFigure( model = Math_TVCchg_BLS_r@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Mathematics" ) show(Figure4) Figure5 <- getFigure( model = Math_TVCchgBL_BLS_r@mxOutput, sub_Model = "TVC", y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9, xstarts = xstarts, xlab = "Year", outcome = "Mathematics" ) show(Figure5) ```