Package: nlpsem 0.3

nlpsem: Linear and Nonlinear Longitudinal Process in Structural Equation Modeling Framework

Provides computational tools for nonlinear longitudinal models, in particular the intrinsically nonlinear models, in four scenarios: (1) univariate longitudinal processes with growth factors, with or without covariates including time-invariant covariates (TICs) and time-varying covariates (TVCs); (2) multivariate longitudinal processes that facilitate the assessment of correlation or causation between multiple longitudinal variables; (3) multiple-group models for scenarios (1) and (2) to evaluate differences among manifested groups, and (4) longitudinal mixture models for scenarios (1) and (2), with an assumption that trajectories are from multiple latent classes. The methods implemented are introduced in Jin Liu (2023) <arxiv:2302.03237v2>.

Authors:Jin Liu [aut, cre]

nlpsem_0.3.tar.gz
nlpsem_0.3.zip(r-4.5)nlpsem_0.3.zip(r-4.4)nlpsem_0.3.zip(r-4.3)
nlpsem_0.3.tgz(r-4.4-any)nlpsem_0.3.tgz(r-4.3-any)
nlpsem_0.3.tar.gz(r-4.5-noble)nlpsem_0.3.tar.gz(r-4.4-noble)
nlpsem_0.3.tgz(r-4.4-emscripten)nlpsem_0.3.tgz(r-4.3-emscripten)
nlpsem.pdf |nlpsem.html
nlpsem/json (API)

# Install 'nlpsem' in R:
install.packages('nlpsem', repos = c('https://veronica0206.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/veronica0206/nlpsem/issues

Datasets:
  • RMS_dat - ECLS-K (2011) Sample Dataset for Demonstration

On CRAN:

7.00 score 204 stars 14 scripts 210 downloads 17 exports 56 dependencies

Last updated 3 days agofrom:77a1627fe8. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winOKNov 20 2024
R-4.5-linuxOKNov 20 2024
R-4.4-winOKNov 20 2024
R-4.4-macOKNov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:getEstimateStatsgetFiguregetIndFSgetLatentKappagetLCSMgetLGCMgetLRTgetMediationgetMGMgetMGroupgetMIXgetPosteriorgetSummarygetTVCmodelModelSummaryprintTableshow

Dependencies:BHbitbit64clicliprcolorspacecpp11crayondigestdplyrfansifarvergenericsggplot2gluegtablehmsisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmennetOpenMxpillarpkgconfigprettyunitsprogresspurrrR6RColorBrewerRcppRcppEigenRcppParallelreadrrlangrpfscalesStanHeadersstringistringrtibbletidyrtidyselecttzdbutf8vctrsviridisLitevroomwithr

Examples of Latent Change Score Models

Rendered fromgetLCSM_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Examples of Latent Growth Curve Models

Rendered fromgetLGCM_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Examples of Longitudinal Mediation Models

Rendered fromgetMediation_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Examples of Multivariate Longitudinal Models

Rendered fromgetMGM_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Multiple-group Longitudinal Models

Rendered fromgetMGroup_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Examples of Longitudinal Mixture Models

Rendered fromgetMIX_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Examples of Longitudinal Models with Time-varying Covariates

Rendered fromgetTVCmodel_examples.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-09-12
Started: 2023-06-04

Readme and manuals

Help Manual

Help pageTopics
S4 Class for displaying figuresfigOutput-class
S4 Class for estimated factor scores and their standard errors.FSOutput-class
Calculate p-Values and Confidence Intervals of Parameters for a Fitted ModelgetEstimateStats
Generate Visualization for Fitted ModelgetFigure
Derive Individual Factor Scores for Each Latent Variable Included in ModelgetIndFS
Compute Latent Kappa Coefficient for Agreement between Two Latent Label SetsgetLatentKappa
Fit a Latent Change Score Model with a Time-invariant Covariate (If Any)getLCSM
Fit a Latent Growth Curve Model with Time-invariant Covariate (If Any)getLGCM
Perform Bootstrap Likelihood Ratio Test for Comparing Full and Reduced ModelsgetLRT
Fit a Longitudinal Mediation ModelgetMediation
Fit a Multivariate Latent Growth Curve Model or Multivariate Latent Change Score ModelgetMGM
Fit a Longitudinal Multiple Group ModelgetMGroup
Fit a Longitudinal Mixture ModelgetMIX
Compute Posterior Probabilities, Cluster Assignments, and Model Entropy for a Longitudinal Mixture ModelgetPosterior
Summarize Model Fit Statistics for Fitted ModelsgetSummary
Fit a Latent Growth Curve Model or Latent Change Score Model with Time-varying and Time-invariant CovariatesgetTVCmodel
S4 Class for kappa statistic with confidence interval and judgment.KappaOutput-class
S4 Generic for summarizing an optimized MxModel.ModelSummary
S4 Method for summarizing an optimized MxModel.ModelSummary,myMxOutput-method
Standard Methods (S4) for the packagemyMxOutput-class
S4 Class for posterior probabilities, membership, entropy, and accuracy (when applicable)postOutput-class
S4 Generic for displaying output in a table format.printTable
S4 Method for printing estimated factor scores and their standard errorsprintTable,FSOutput-method
S4 Method for printing kappa statistic with $95%$ CI and judgement for agreement.printTable,KappaOutput-method
S4 Method for printing point estimates with standard errorsprintTable,myMxOutput-method
S4 Method for printing posterior probabilities, membership, entropy, and accuracy.printTable,postOutput-method
S4 Method for printing p values and confidence intervals (when applicable)printTable,StatsOutput-method
ECLS-K (2011) Sample Dataset for DemonstrationRMS_dat
S4 Method for displaying figures.show,figOutput-method
S4 Class for p values and confidence intervals (when specified).StatsOutput-class